

School of Physics

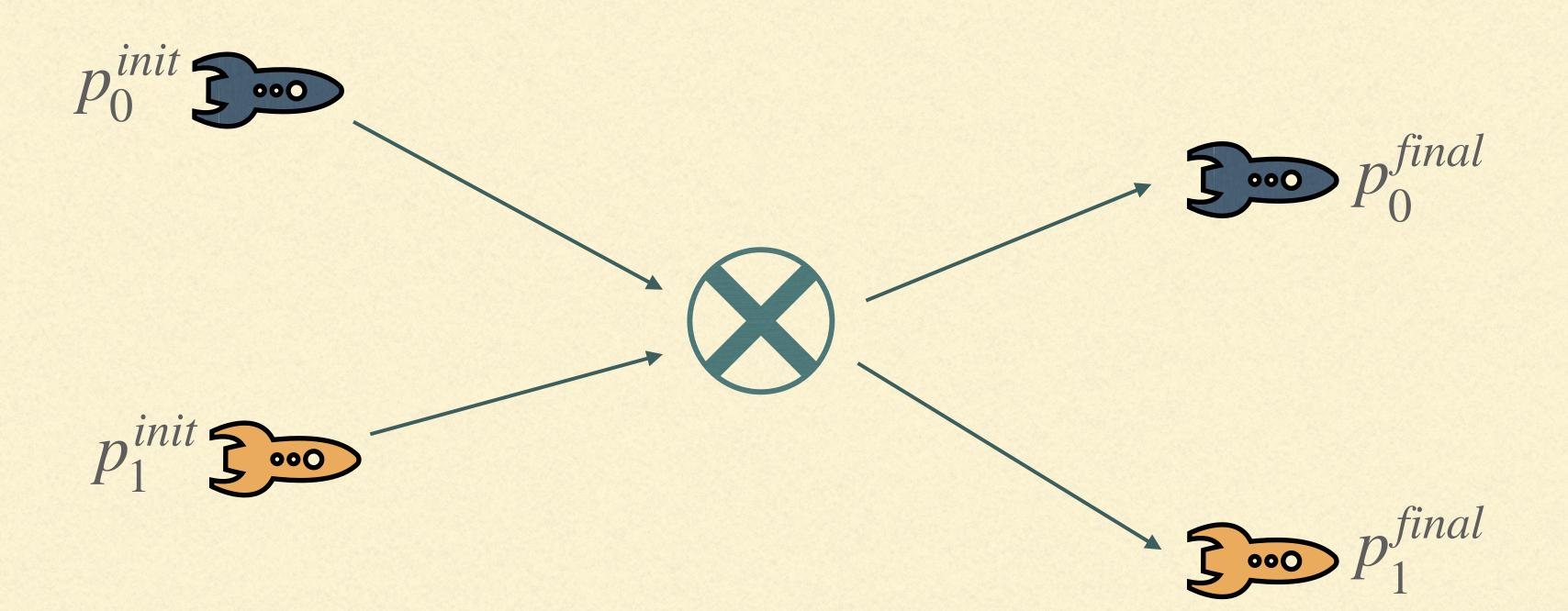
Quantum Conservation Laws and how to fix them

Daniel Collins and Sandu Popescu

Example: Conservation of Energy

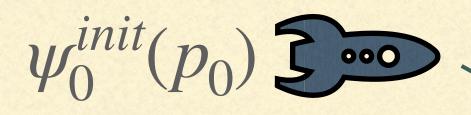
How high will the ball roll?

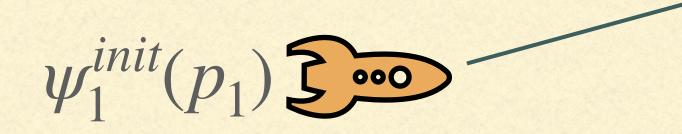
Classical Conservation Laws



Total Momentum Before = Total Momentum After

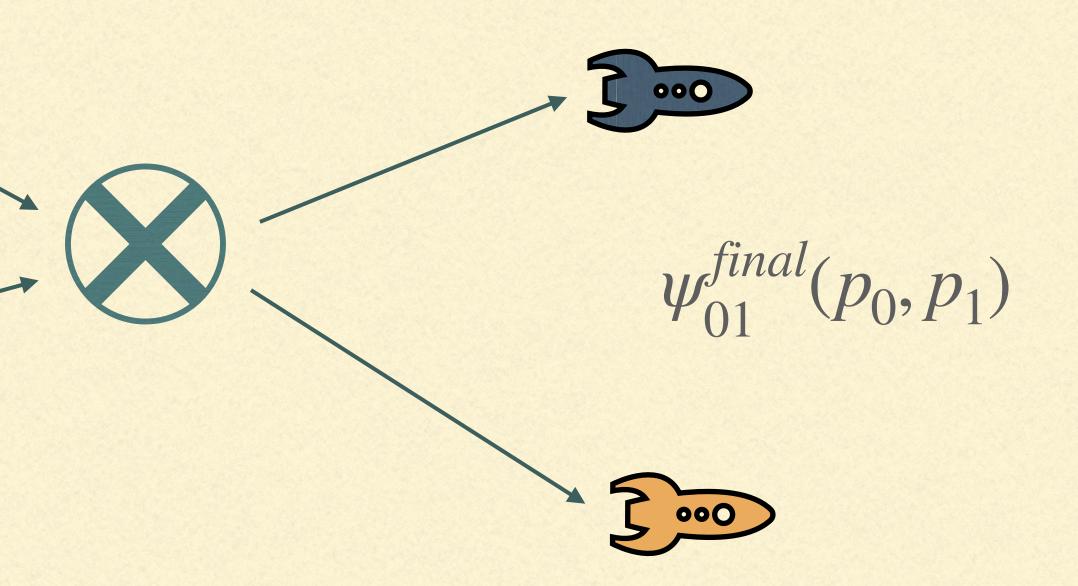
 $p_0^{init} + p_1^{init} = p_0^{final} + p_1^{final}$

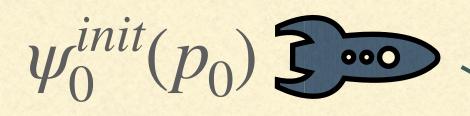


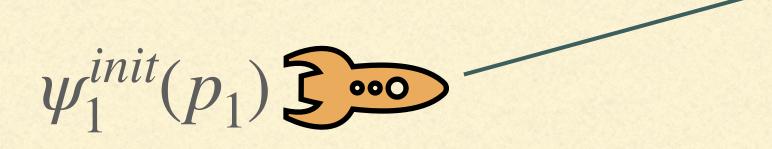


Distribution of Total Momentum Before = Distribution of Total Momentum After

Quantum Conservation Laws



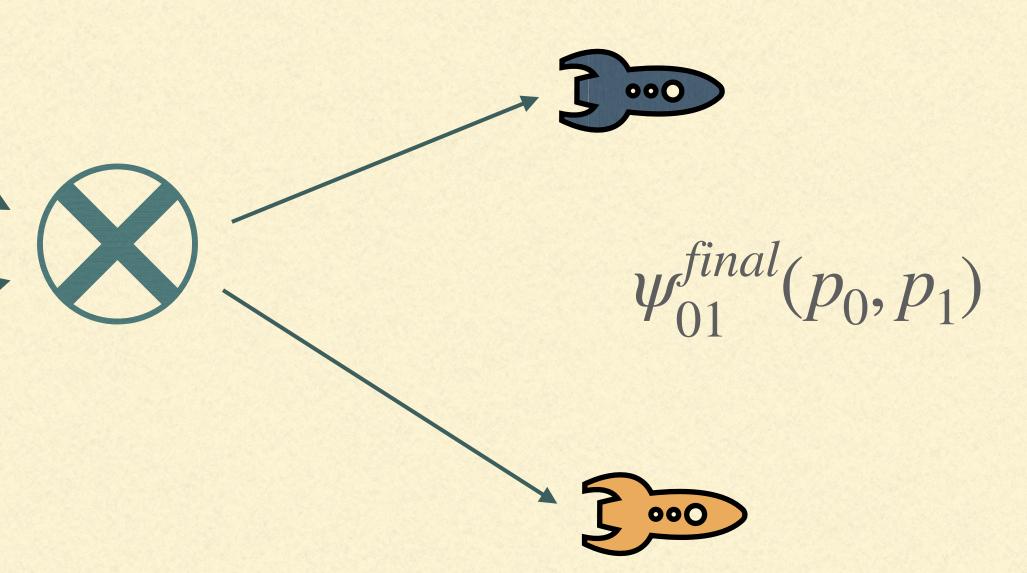




Distribution of Total Momentum Before = Distribution of Total Momentum After

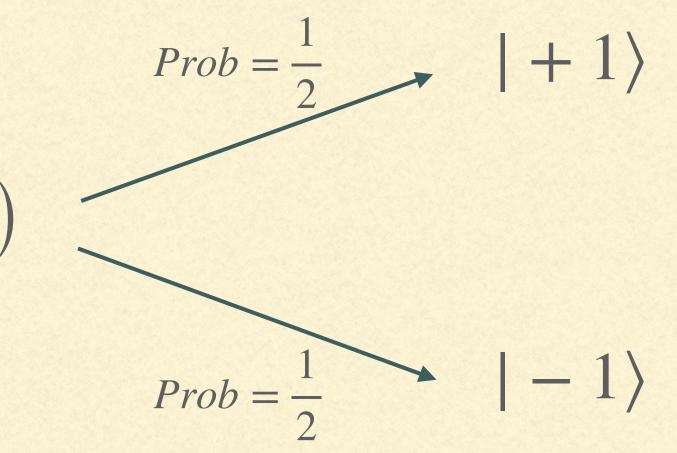
$$g(p_{tot}) = \int |\psi_0^{init}(p_{tot} - q)|^2 |\psi_1^{init}(q)|^2 dq = \int |\psi_{01}^{final}(p_{tot} - q, q)|^2 dq$$

Quantum Conservation Laws



Conservation in a Measurement

$\frac{1}{\sqrt{2}}\left(|-1\rangle + |+1\rangle\right)$



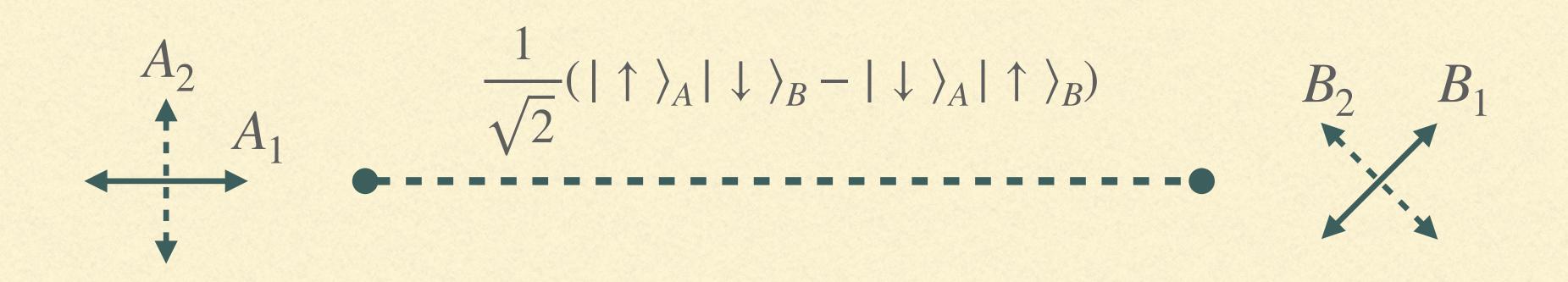
Conserved Quantity Jumps.

Jump Problem - Hidden Variables?

* Classically we simply improve our knowledge of a pre-existing state.

Jump Problem - Hidden Variables?

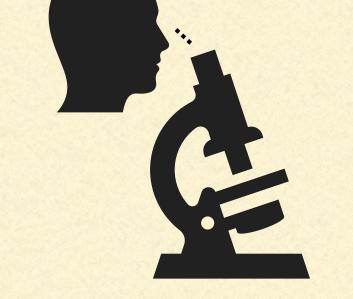
* Classically we simply improve our knowledge of a pre-existing state.



* Quantum Mechanically the outcome is not pre-existing (Bell Inequalities).

* Does the jump come from the measuring device, or the human act of measurement?

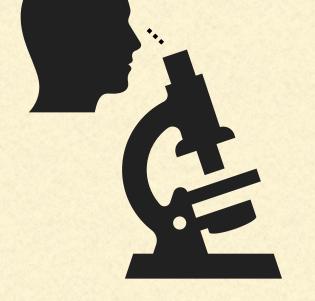
Jump Problem - Measuring Device?



* Does the jump come from the measuring device, or the human act of measurement?

* No: the measuring interaction can leave the measuring device with the same value of the conserved quantity as it started.

Jump Problem - Measuring Device?



Measurement Interaction

Define measurement of L, Angular Momentum on a circle: $|\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow |\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 1 \rangle_M$

 $|\hat{\mathbf{L}} = l_2 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow |\hat{\mathbf{L}} = l_2 \rangle_S |\hat{\mathbf{q}} = 2 \rangle_M$

Measurement Interaction

Define measurement of L, Angular Momentum on a circle:

$$|\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow$$
$$|\hat{\mathbf{L}} = l_2 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow$$

Measure System:

- $|\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 1 \rangle_M$ $|\hat{\mathbf{L}} = l_2 \rangle_S |\hat{\mathbf{q}} = 2 \rangle_M$

 $(\alpha | l_1 \rangle_S + \beta | l_2 \rangle_S) | 0 \rangle_M \rightarrow \alpha | l_1 \rangle_S | 1 \rangle_M + \beta | l_2 \rangle | 2 \rangle_M$

Measurement Interaction

Define measurement of L, Angular Momentum on a circle:

$$|\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow$$
$$|\hat{\mathbf{L}} = l_2 \rangle_S |\hat{\mathbf{q}} = 0 \rangle_M \rightarrow$$

Measure System:

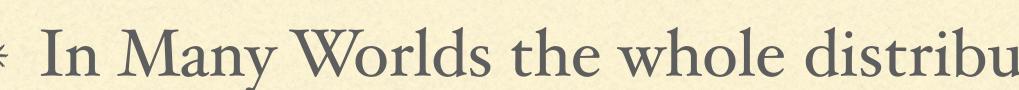
Read Pointer:

 $\int |l_1\rangle_S |1\rangle_M$ with probability $|\alpha|^2$

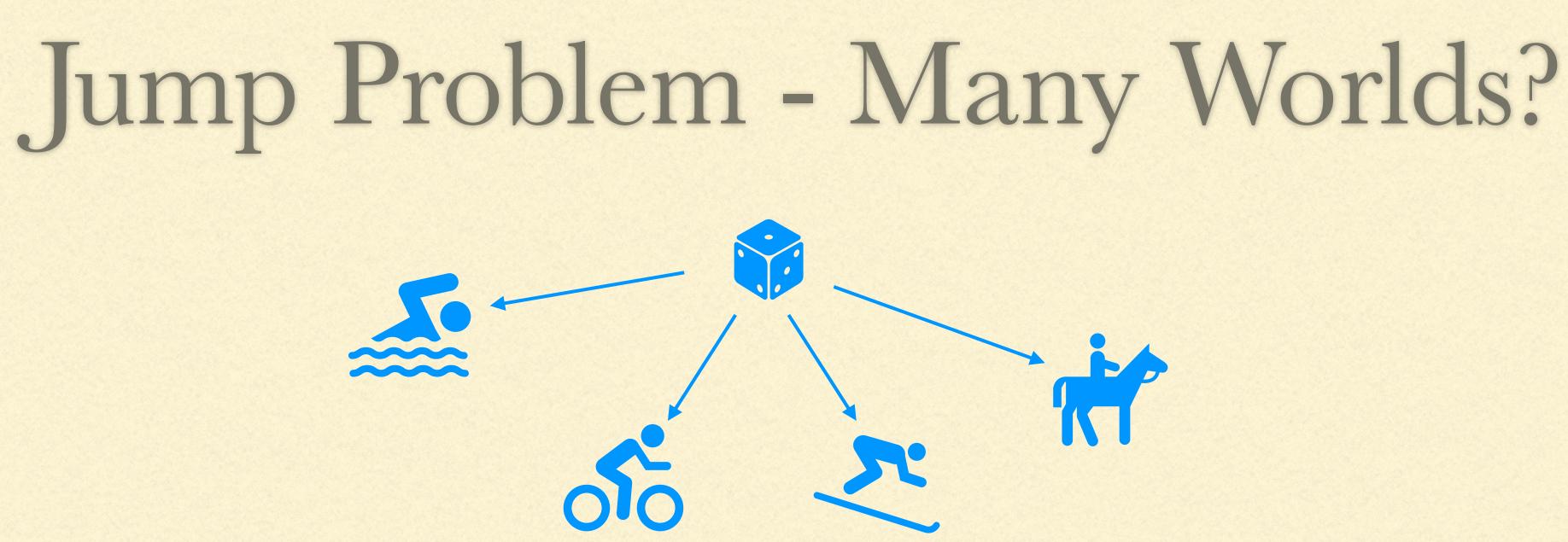
- $|\hat{\mathbf{L}} = l_1 \rangle_S |\hat{\mathbf{q}} = 1 \rangle_M$ $\hat{\mathbf{L}} = l_2 \rangle_{\mathcal{S}} |\hat{\mathbf{q}} = 2 \rangle_{\mathcal{M}}$

 $(\alpha | l_1 \rangle_S + \beta | l_2 \rangle_S) | 0 \rangle_M \rightarrow \alpha | l_1 \rangle_S | 1 \rangle_M + \beta | l_2 \rangle | 2 \rangle_M$

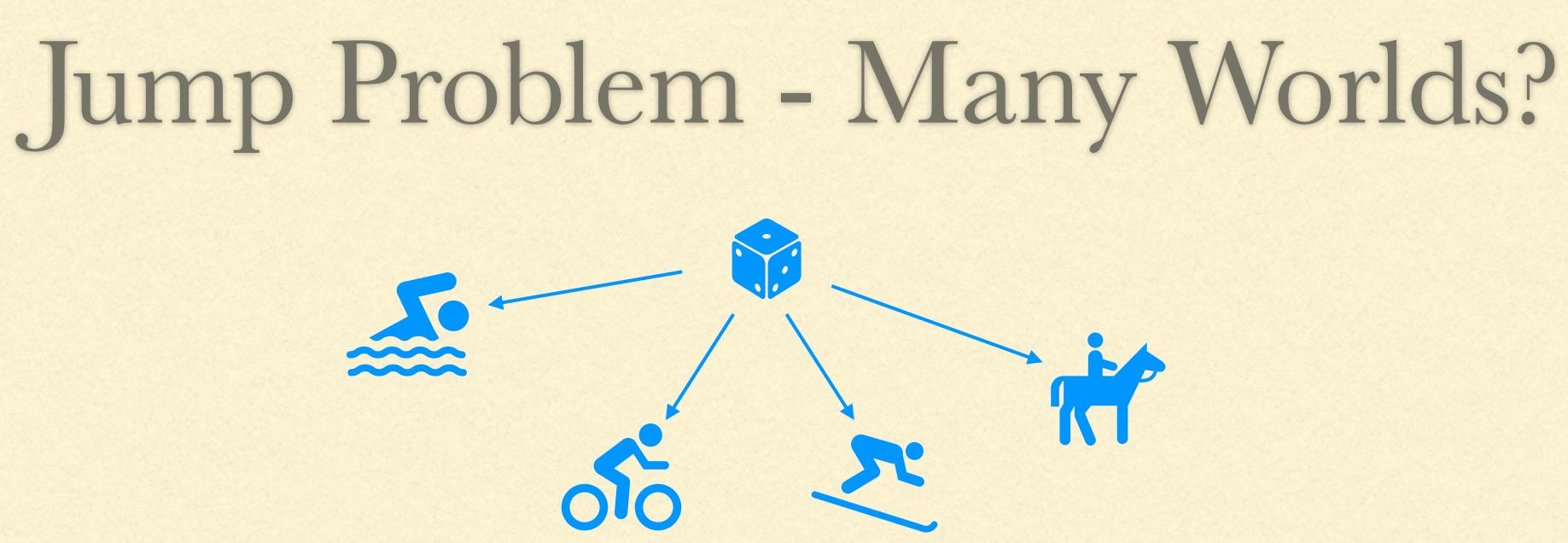
 $|l_2\rangle_S|2\rangle_M$ with probability $|\beta|^2$



* So no jump at level of multiverse.



* In Many Worlds the whole distribution is realised across the multiverse.



- * So no jump at level of multiverse.
- * However we only see one world, and in our world there is a jump.

* In Many Worlds the whole distribution is realised across the multiverse.

How can a Conserved Quantity Jump?

$(\alpha | l_1 \rangle_S + \beta | l_2 \rangle_S) | 0 \rangle_M$

No hidden variable, not from measuring device, no help from many worlds.

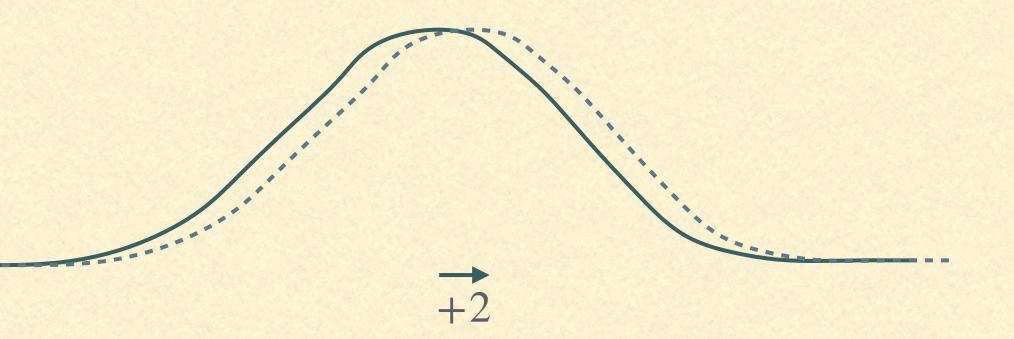
$$Prob = |\alpha|^{2} |l_{1}\rangle_{S}|1\rangle_{M}$$
$$Prob = |\beta|^{2} |l_{2}\rangle_{S}|2\rangle_{M}$$

The Preparation

Preparer (mirror and beamsplitter) starts in a state with a wide and smooth distribution of momentum.

 $|\Phi\rangle_P|0\rangle_S$

$$\rightarrow \frac{1}{\sqrt{2}} \left(|\Phi - 1\rangle_P | + 1\rangle_S + |\Phi + 1\rangle_P | - 1\rangle_S \right)$$



What if there is no Preparer?

Suppose the state is precisely:

 $\cos\theta |l_1\rangle_S + e^{i\phi}\sin\theta |l_2\rangle_S$

 $\perp o^{i\phi} \sin A$

The Preparer has vanished.

The Meaning of ϕ

 ϕ is an absolute angle, which has no meaning.

Frame of Reference

System with absolute angle:

 $\int \tilde{\Psi}(\phi_s) |\phi_s\rangle_S d\phi_s$

Frame of Reference

System with absolute angle:

Relative to frame of reference F:

 $\tilde{\Psi}(\phi_s) | \phi_s \rangle_S d\phi_s$

$\int \tilde{\Phi}_f(\phi_f) |\phi_f\rangle_F \int \tilde{\Psi}(\phi_s - \phi_f) |\phi_s\rangle_S d\phi_s d\phi_f$

Frame of Reference = Preparer

System with absolute angle:

Relative to frame of reference F:

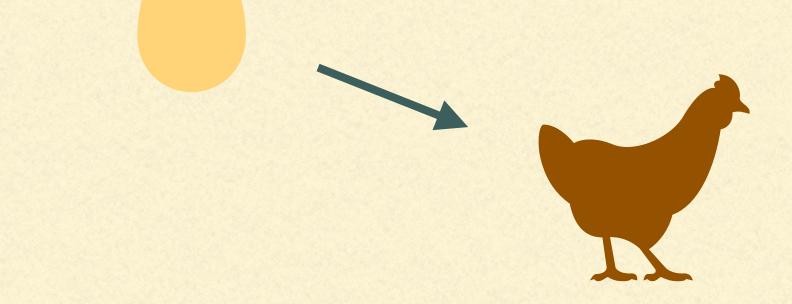
Preparation in angular basis:

 $\int \tilde{\Phi}_{p}(\phi_{p}) |\phi_{p}\rangle_{P} d\phi_{p} \frac{1}{\sqrt{2\pi}} \int |\phi_{s}\rangle_{S} d\phi_{s} \to \int \tilde{\Phi}_{p}(\phi_{p}) |\phi_{p}\rangle_{P} \int \tilde{\Psi}(\phi_{s} - \phi_{p}) |\phi_{s}\rangle_{S} d\phi_{s} d\phi_{p}$

 $\tilde{\Psi}(\phi_s) | \phi_s \rangle_S d\phi_s$

 $\left[\tilde{\Phi}_{f}(\phi_{f}) | \phi_{f} \rangle_{F} \left[\tilde{\Psi}(\phi_{s} - \phi_{f}) | \phi_{s} \rangle_{S} d\phi_{s} d\phi_{f}\right]\right]$

Who Prepared the Preparer ?



The Grand-Preparer

Start: $|\Phi_g\rangle_G |0\rangle_P |0\rangle_S$.

The Grand-Preparer Start: $|\Phi_g\rangle_G |0\rangle_P |0\rangle_S$. ∞ Preparation: $|l\rangle_G |0\rangle_P \rightarrow \sum \Phi_p(k) |l-k\rangle_G |k\rangle_P$. $k = -\infty$

No Grand-Preparer Start: $|\Phi_g\rangle_G |0\rangle_P |0\rangle_S$. Preparation: $|l\rangle_G |0\rangle_P \rightarrow \sum_{p=1}^{\infty} \Phi_p(k) |l-k\rangle_G |k\rangle_P$. $k = -\infty$

Time	Preparer $\mathbb{P}(\hat{\mathbf{L}}_p = l)$	Grand-Preparer $\mathbb{P}(\hat{\mathbf{L}}_g = k)$
Preparer Prepared	$ \Phi_p(l) ^2$	$\sum_{l=-\infty}^{\infty} \Phi_g(k+l) ^2 \Phi_p(l) ^2$
Measurement gives $\hat{\mathbf{L}}_s = l_0$	$ \Phi_p(l+l_0) ^2$	$\sum_{l=-\infty}^{\infty} \Phi_g(k+l) ^2 \Phi_p(l) ^2$

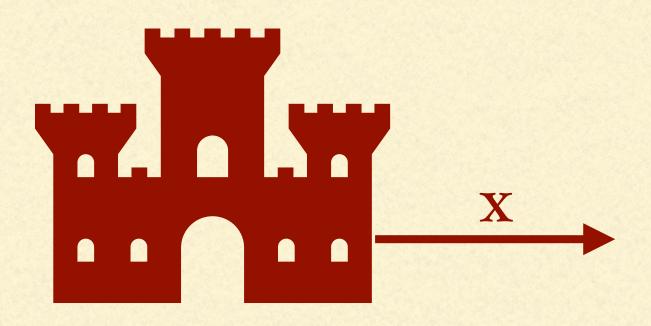
The Grand-Preparer is not required for our conservation law, only the Preparer.

Does Preparer exist in Nature?

Suppose the Universe is in a momentum eigenstate. Can I find an object in a superposition of momentum?

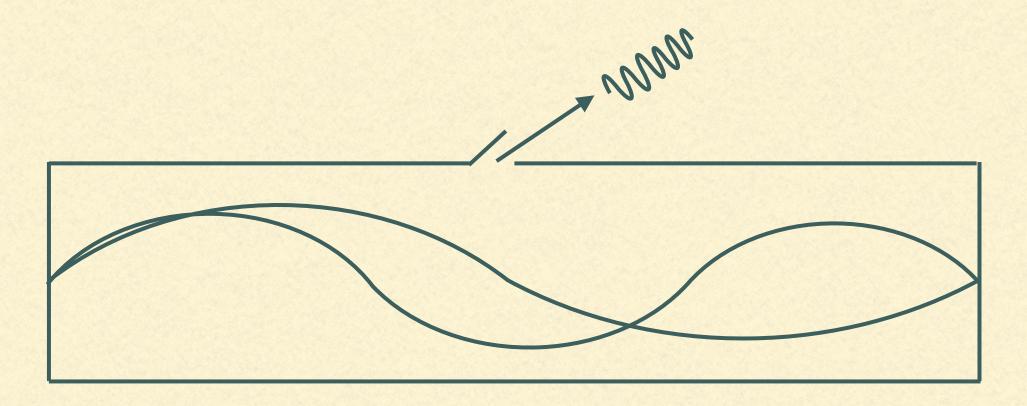
Does Preparer exist in Nature?

Suppose the Universe is in a momentum eigenstate. Can I find an object in a superposition of momentum?



Yes: we see many objects we can use to define a frame of reference for a position.

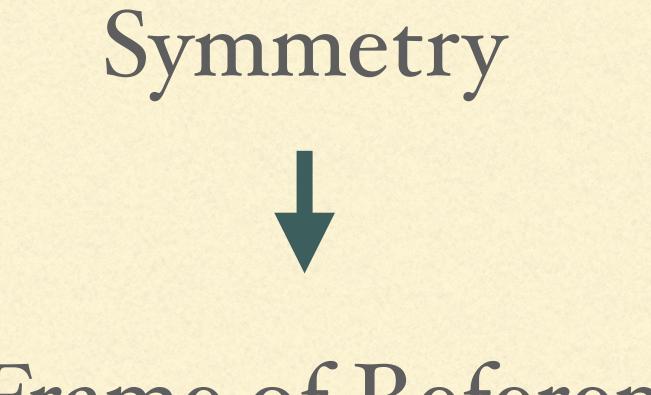
High Energy Paradox Y. Aharonov, S. Popescu and D. Rohrlich, "Conservation laws and the foundations of quantum mechanics".



Photon in Superposition of Low Energies

Noether's Theorem

Conserved Quantity



Frame of Reference

Noether's Theorem v2

Conserved Quantity

Preparer

Summary

- for each individual outcome of a measurement.
- * Total across System & Preparer.
- * Preparer is finite no need to include the whole universe.
- * Need a frame of reference to define an angle: this *is* the preparer.
- * Paper on arXiv: D Collins and S Popescu, arXiv.2404.18621 (2024)

* Total of a conserved quantity, angular momentum on a circle, is unchanged

Bibliography

- (2023).
- * Maudlin, E. Okon, and D. Sudarsky, Stud. Hist. Phil. Sci. B 69, 67 (2020).
- * Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).

* High From Low Energy Superposition Paradox: Y. Aharonov, S. Popescu, and D. Rohrlich, Proc. Natl. Acad. Sci. USA 118, e1921529118 (2021); Proc. Natl. Acad. Sci. USA 120, e2220810120

Energy Non-Conservation: S. M. Carroll and J. Lodman, Found. Phys. 51, 83 (2021); T.

Quantum Frame of Reference: Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967); S. D.

* Conservation Laws in Many Worlds: L. Vaidman, PhilSci Archive Preprint 23509 (2024).

Appendix: Preparation in Angular Basis

 $|\phi_p\rangle_P |\hat{\mathbf{L}}_s = 0\rangle_S = \sum e^{-i\phi_p l} |l\rangle_P |\hat{\mathbf{L}}_s = 0\rangle_S$ $\rightarrow \sum_{k=1}^{\infty} e^{-i\phi_p l} \sum_{k=1}^{\infty}$ $l = -\infty$ $m = -\infty$ $= \sum_{n=1}^{\infty} e^{-i\phi_p m} \Psi(m) |\phi_p\rangle_P |m\rangle_S$ $m = -\infty$ $= e^{-i\phi_p \hat{\mathbf{L}}_s} |\phi_p\rangle_P \sum_{k=1}^{\infty}$ $m = -\alpha$ $= e^{-i\phi_p \hat{\mathbf{L}}_s} |\phi_p\rangle_P \left[\tilde{\Psi}(\phi_s) |\phi_s\rangle_S d\phi_s \right]$ $= |\phi_p\rangle_P \left[\tilde{\Psi}(\phi_s) | \phi_s \right]$

$$\Psi(m) | l - m \rangle_P | m \rangle_S$$

$$\Psi(m) | m \rangle_S$$

$$\langle \varphi_{s} + \phi_{p} \rangle_{S} d\phi_{s} = |\phi_{p}\rangle_{P} \int \tilde{\Psi}(\phi_{s} - \phi_{p}) |\phi_{s}\rangle_{S} d\phi_{s}$$

Appendix: The Grand-Preparer

Grand-Preparer starts in $|\Phi_g\rangle_G$, Preparer in $|0\rangle_P$, System in $|0\rangle_S$. Interaction for preparing the Preparer:

$$|l\rangle_G |0\rangle_P \rightarrow \sum_{k=-\infty}^{\infty} \Phi_p(k)$$

Interaction for preparing the System:

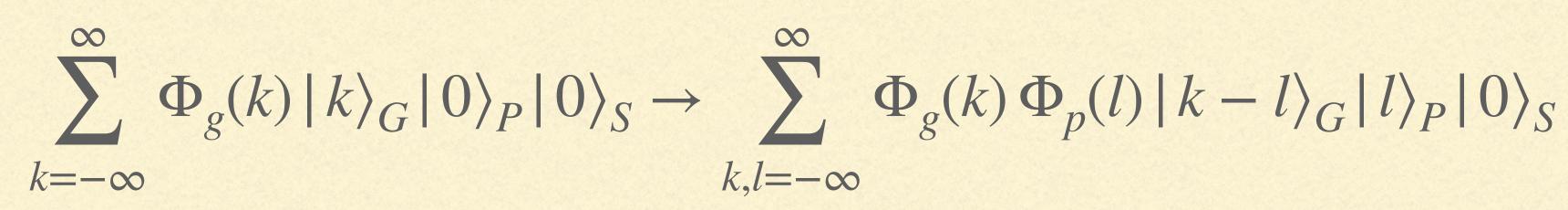
$$|l\rangle_P |0\rangle_S \rightarrow \sum_{S}^{\infty} \Psi(m)$$

 $m = -\infty$

$$l-k\rangle_G |k\rangle_P$$

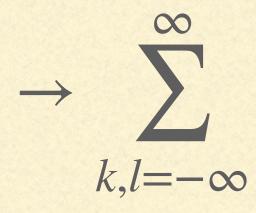
 $|l-m\rangle_P|m\rangle_S$

Prepare the Preparer:



Prepare the System:

Measure the System, outcome l_0 :



Appendix: The Grand-Preparer 2

 $\rightarrow \sum \Phi_g(k) \Phi_p(l) \Psi(m) | k - l \rangle_G | l - m \rangle_P | m \rangle_S$

 $k,l,m=-\infty$

$$\Phi_g(k) \Phi_p(l) | k - l \rangle_G | l - l_0 \rangle_P | l_0 \rangle_S$$